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ABSTRACT 

Brain-computer interface (BCI) is a new frontier of neuropsychological rehabilitation. 

Neuroscientists have long visualized the possibility of using brain signals to control artificial 

devices. There are promises as well as challenges involved in it.  The present article examines the 

concept of BCI through its function-based classification and its various operational paradigms such 

as P300, steady state evoked potentials, sensorimotor rhythms, and slow cortical potentials, which 

are used as means of BCI. In this context, Hebb’s theorem of long-term potentiation (LTP) was 

discussed to explain the mechanism of behaviour change. While describing the stages of signal 

acquisition, this article describes procedures for artifact reduction.  It provides a kaleidoscopic view 

evidence-based practice of BCIs various clinical conditions, with hope that in coming years BCI 

will provide new avenues of applied research and insight for neuropsychological intervention.  

Keywords  Brain-Computer Interface, P300, Steady State Evoked Potential, Sensorimotor 

Rhythm, Slow Cortical Potentials, Long-Term Potentiation 

INTRODUCTION 

Brain is an immensely complex, self-organizing and 

self-modifying ‘super organ’, that has always remained 

an enigma. Its learning, memory and categorization 

capabilities make it possible to self-recruit the sensory 

and motor systems to identify patterns and features in the 

real world, which in turn, helps it in modeling and 

modifying the external world for its best use. Its 

capability to directly alter its own circuitry and neural 

activity even offers promises for treatment of brain 

damage. However, this capacity for self-recovery 

(plasticity) is limited. Therefore, the existing functions 

need to be augmented through assistive technology—

neuroprosthesis, the devices, which are linked to the 

peripheral or central nervous system to enhance the 

cognitive, motor or sensory abilities (Medical 

Dictionary, 2009). In a broader sense, such devices—

most often computers, used for restoring and enhancing 

the functions lost due to brain damage is called the brain-

computer interface (BCI). Vidal coined this term in 1973 

describing it as “utilization of the brain signals in a man-

computer dialogue” (Vidal, 1973). BCI is primarily a 

communication system in which an individual sends 

messages or commands to the external world without 

passing through the brain’s normal output pathways of 

peripheral nerves and muscles (Wolpaw et al, 2002). The 

CBI system uses devices that enable their users to 

interact with computers and machines by using brain 

activity (Nam, Nijholt, & Lotte, 2018). Nicolelis (2001) 

predicted that real-time interfaces between the brain and 

electronic and mechanical devices could one day be used 

to restore human sensory and motor functions. The 

present article attempts to track some of the significant 

developments in the field that has created convergences 

in closer inter- and cross-disciplinary approach and 

expanded the field of neuroscience enormously.  

The earliest development of BCI came with Hans 

Berger’s path-breaking discovery of 

electroencephalogram (Berger, 1929), which translated 

the brain signals into electrical signals to study cognitive 

functions and their neural correlates. The technology 

opened floodgates for research and applications. Joseph 

Kamiya (1968) on the other hand used alpha waves in 

neurofeedback training and demonstrated that human 

action can control the brain waves such as alpha is 

possible by receiving real time feedback, based on the 

principle of operant learning. Another remarkable 

innovation was Farwell and Donchin’s (1988) ‘P300 

Speller’ a form of mental prosthesis, based on event-

related potential (ERP). It was a 6 x 6 grid of letters and 

digits, from which the user can select letters as well as 

digits to spell. It became possible to detect and predict 

which row and which column contains the letter that the 

user would select to spell. Although, designed for 

healthy users, could be used successfully for people with 

brain injury. Childers and associates (1989) developed a 

‘cortical mouse’, based on event-related potentials, 

which enabled the user to select one command among 

the two. This was based on the N400 response to a 

congruent or incongruent stimulus sentence (Konger et 

al. 1990, Principe, 2013).  Thereafter, researchers 

developed BCI-based parameters such as sensorimotor 

rhythms (SMR) (Wolpaw et al. 1991). Since end of the 

last century there has been a bloom of research in the 

field, as a result of which BCI has become a distinct field 

itself. For comprehensive and detailed review of the 

historical development, readers may refer to Nam, 

Nijholt, & Lotte, (2018).  

Types and Paradigms of BCI  

The BCIs are classified under three different categories 

(Zander, et al, 2008): active, reactive and passive.  Active 

BCIs are based on brain electrical patterns of activities, 

identified in terms of specific frequency bands at a 
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specific electrode location. The user actively generates 

the electrical changes by use of limbs movements or 

through cognitive performance (e.g. mental arithmetic, 

speech imagery, visualization or mental rotation).  

Reactive BCIs are the brain responses to certain stimuli 

(cues that the user uses and the ones he/she ignores). 

Apart from discrimination and feature detection, it also 

reveals the emotional state of the individual user such as 

frustration, attention, workload, and drowsiness. which 

are measured through event-related potentials (ERPs) of 

Steady State Evoked Potentials (SSEP). The third group, 

Passive BCIs use information about the user’s cognitive 

or emotional states as neural correlates of cognitive and 

affective states in order to improve performance. These 

are further explained through its paradigms. 

Few paradigms of research have been discusses in the 

next section, which focuses on some of the major 

paradigms of BCI. 

P300 based BCI Paradigm 

P300 is a positive deflection in human event-related 

potential (ERP), most commonly elicited by “oddball” 

paradigm in which an occasional “target” stimulus 

appears in a regular train of standard stimuli. The peak 

P300 is generally seen in adults while making a simple 

discrimination at 300 ms. and its amplitude varies with 

the chance of occurrence of a target (infrequent) 

stimulus, whereas the latency varies with difficulty in 

distinguishing a target stimulus from the standard ones 

(i. e simple discrimination).  People, with decreased 

cognitive abilities (as in epilepsy) tend to have smaller 

and later waves than in age-matched normal participants. 

It reflects the amount of attentional resources allocated 

to a task as well as degree of information processing of 

an individual. Although the origin and role of P300 is not 

adequately understood, the wave is expected to occur 

only if an individual is actively engaged in detecting the 

target. It is generated naturally without any conscious 

effort in response to target trial, therefore, unlike many 

rhythm-based neurofeedback tools, the ability to control 

the proposed P300-based neurofeedback training is 

obtained after a short calibration, without undergoing 

tedious trial and error sessions. This can be the basis for 

input for performance-enhancing assistive devices for 

patients suffering from brain damage or impaired 

neurological functioning for improving their quality of 

life (Arvaneh, Robertson, & Ward, 2019). 

Steady State Visual Evoked Potentials (SSVEP) based 

BCI Paradigm VEPs are elicited by changes in the visual 

field, which are strongly generated in the occipital area 

of the brain and there are two types of visual evoked 

VEPs: Steady State Visual Evoked Potential (SSVEP) 

and Transient State Visual Evoked Potential (TSVEP). 

The former is elicited by the change in the visual field, 

which is higher than 6 Hz (Wu, He & Tian, 2012) and 

the later is lower than 6 Hz, and can be caused by events 

such as visual stimulus applied to the subject via a 

computer screen. ‘Steady state’ is vibratory in nature. 

When a participant is presented with a steady state 

stimulus (visual, auditory or vibrotactile), rhythmic brain 

activity associated with cortical areas will be generated 

similar to the frequency of the stimuli. Currently, the 

most popular one is Steady-State Visual Evoked 

Potentials (SSVEP) in BCI operations. This is elicited by 

visual stimuli, whereas, auditory stimuli elicit Steady-

State Auditory Evoked Potentials (SSAEPs)(Hill, et al. 

2012).  These evoke potential are useful for training 

patients suffering from brain damage that affects their 

communication significantly and those who are in ‘lock-

in’ condition. 

Sensorimotor Rhythms (SMR) Paradigm 

SMR the rhythm is typically picked up from 

sensorimotor part of the cortex, notably, the Mu band or 

Mu rhythm (∼7-13 Hz, alpha band) mostly picked up at 

sensorimotor part of the cortex (somatosensory and 

motor cortices) and also the Beta band 14-30 Hz). The 

participants are trained to control the amplitude of the 

SMR, so that they can self-regulate in order to activate 

an assistive device (e.g. 1D cursor). These wave patterns 

may change due to either actual or imagined movements, 

which create event related desynchronization (ERD) i. e 

increase in the frequency band amplitude immediately in 

the sensorimotor area (Graimann et al. 2010). The event-

related synchronization (ERS) is significant for BCI 

studies on patients who have neurological disorders 

affecting motor co-ordination.  Pfurtscheller, Flotzinger, 

and Kalcher (1993) developed an imagery-based BCI in 

which the user had to explicitly imagine left- or right-

hand movements. The SMR generated from this motor 

imagination was translated into command for a computer 

by using machine learning that focuses on the use of data 

and algorithm to improve its own performance, which is 

similar to human learning that improves gradually by 

accuracy. It allows making accurate prediction of the 

outcomes. Tariq and his associates (Tariq, et al., 2018) 

studied the use of SMR for improving the gait 

disturbance of people suffering from spinal cord injuries 

(SCI) and found that the action imageries obtained 

through SMR could improve the functioning of an 

individual.  In other words BCI could be used to build 

new communication channel between the brain and other 

output devices. 

Slow Cortical Potentials (SCP) Paradigm 

Slow Cortical Potentials (SCP) is the third type of 

paradigm, which refers to very slow shifts in electrical 

activity of the brain lasting from several milliseconds to 

several seconds. SCP takes anywhere from 1 second to 

several seconds to develop. It suggests that the 

information transfer rate is quite slow compared to 
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SSVEP and visual P300. A change of the direction of 

negative polarity is associated with increased cortical 

activity or movement and a change in the positive polarity 

is associated with decreased cortical activity and calm 

(Nam, Choi, Wadeson, & Whang, 2018). These changes 

in neural activity are assumed to be related with 

excitability of the neural network that is linked with 

mental functioning such as executive functions, especially 

attention (Banaschewski and Brandeis, 2007, Calderone et 

al., 2014). These negative or positive polarizations, can be 

externally triggered or self-induced. The amplitude of this 

low frequency variation of can be voluntarily increased or 

decreased through neurofeedback training. For instance, 

among the neurofeedback protocols applied for Attention 

Deficit-Hyperactivity, SCP-training is considered as the 

best validated approach (Mayer et al, 2013).  SCPs have 

moderating impact on information processing. This has 

been demonstrated in a number of studies (e.g. Bauer & 

Nirnberger, 1981; Birbaumer, et al., 1992; Schupp et al. 

1994). Similar to SMR BCIs, SCP BCIs do not rely on 

external stimuli, such as visual stimuli of SSVEP in order 

to generate brain wave patterns. Instead of which users 

control their thought processes in order to interact with 

BCI.  SCPs are generally analysed through Thought 

Translation. It can select one group of commands or 

another to increase or decrease the SCP. All the above 

paradigms of BCI heavily rely on the principles of operant 

conditioning. Extensive and intensive training is required 

using individualized cognitive and behavioural strategies 

(Studer et al., 2014). 

Hwang et al. (2013), who conducted a survey of the 

neurotechnologies used for BCI studies, reported that, 

according to the published work during 2007-11, EEGs 

(i. e. P300, SSVEP, SMR) are the most commonly used 

BCI technologies. At least 68% research articles are 

based on these technologies, followed by invasive 

technologies (32%), IMRI (3%), Functional Near 

Infrared Spectroscopy (fNIRS) (3%) and MEG (2%).  

CBI and Neuroplasticity 

Neuroplasticity refers to capacity of the brain to self (re) 

organize after trauma or environmental changes (Gross-

Wentru et al. 2011). This innate capacity makes BCIs 

successful in restoration of brain function.  CBI is now 

designed for neuromdulation that induces plasticity in 

neural structures. It is suggested that experience–

dependent activation of two or more converging inputs 

strengthens the connectivity of neurons, whereas the 

connectivity is weakened by uncorrelated activities due 

to “neural pruning”.  

In this context, it is important to understand Hebb’s theorem 

of long-term potentiation (LTP), the cellular mechanism for 

memory and learning storage. Hebb (1949) suggested that 

relearning motor tasks because of motor impairments 

requires correlated activation of neural cells. Accordingly, 

relearning of motor tasks in people suffering from motor 

impairment requires correlated activation of neural cells. 

Other investigators have extensively investigated this. For 

instance in one of the in vitro experiments this was observed 

following stimulation of the prefrontal path. LTP was 

observed in dentate area of the anesthetized rabbit (Bliss & 

Lomo, 1973). This phenomenon has been extensively 

studied in hippocampus of rats. The mu rhythm changes are 

quantified in terms of event-related. However, Stefan and 

colleagues (Stefan, et al., 2000) provided the first proof of 

LPT-like plasticity in a human experiment. Although LPT 

is dependent on the extent of brain damage, these 

observations suggest that BCI designed for 

neuromodulation, based on known theories of memory 

storage and learning can benefit the patients who have lost 

certain adaptive functions due to brain damage.  

Stages in BCI 

In the previous section, I discussed the most widely used 

parameters of signals used for BCI. There is always a 

need for improving signal quality and extract important 

features. Therefore, the computers have to be designed 

in a manner to accurately detect and amplify the signals 

in order to make them perceptible for the user. 

There are several stages of implementation of BCI for 

securing high level of competence, which starts with 

recording, designing and application in real settings. It 

involves various stages of processing for effective use in 

neuropsychological rehabilitation, such as signal 

acquisition, improving signal quality, feature extraction, 

classification and application 

The raw signals picked up from the targeted cites of the 

body (e.g. scalp, brain, skin or muscles) whether invasive 

or non-invasive are inherently “noisy” or contaminated 

with “artifacts”, which could be endogenous (e.g. eye 

blink, heart rate, sweating, bodily movements) or 

exogenous (e. g. power line interference, affecting flow 

of the current, poor impedance due to electrode contact 

and electrode drift). A notch filter is applied at 50 Hz to 

60 Hz to remove artifacts due to power line data from the 

incoming signals (Nam, Choi, Wadeson, & Whang, 

2018).  A good number of artifacts are reduced manually 

just by organizing the setting by giving appropriate 

instruction to the participant and others by use of 

technology. For instance the eye blink, heart rate have 

certain patterns of electrical activity, which goes 

unnoticed, and contaminating the data. High correlation 

of these biosignals (e.g. ECG, EOG, or EMG) with the 

index signals (e.g. EEG or ERP) reveals the extent of 

data contamination. Statistical analyses and visual 

monitoring are used to overcome irrelevant signals from 

issues with EEG cap. Under circumstance, when the 

correlation between these sources and the EEG is still 

high the data is not considered for controlling BCI. 

Spatial filtering is conducted in order to enhance the 
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sensitivity to a particular cite (brain sources) from which 

the data is acquired. It improves source localization and 

suppresses certain artifacts (Krusienski, et al. 2012). 

Referencing of one of the principal measures of spatial 

filtering and the simplest measure of bipolar reference, 

which is a measure of difference between two electrodes 

placed anteriorly, posteriorly, to left or right of the target 

position. Spatial filtering can be derived from user’s data 

using statistical methods such as principal component 

analysis (PCA), independent component analysis (ICA) 

and common spatial pattern (Nam, Choi, Wadeson, & 

Whang, 2018).  Apart from amplification and filtering 

original signals there is a need for performing analog to 

digital conversion to facilitate further processing and 

storage of data, which is often programmed with the 

computer. 

In order to understand the acquired data in terms of their 

functionality, the data features are classified according 

to the nature of activation. For instance, Hidden Markov 

Model is being used extensively to classify EEG-based 

BCIs (see Cincotti et al. 2003). Other feature classifiers 

include, linear classifiers, and artificial neural network 

classifiers. These classifiers aim at determining the 

user’s intention by extracted brain features.   

Application 

If EEG and ERP can be obtained reliably in real-time, it 

is logical to ask how to make use of it in 

neuropsychological intervention? While the technology 

has generated considerable interest as a potential tool for 

rehabilitation, there are critical questions too about 

which signal to be used in which context or training 

paradigms.  

Neurofeedback 

(a) Neurofeedback involves providing feedback in the 

form of some visual or auditory stimulus, based on some 

predetermined EEG feature (Micouland-Franchi et al. 

2015) and normalize the EEG. This has been used 

successful treatment in wide range of behaviours 

including mental health problems, such as treatment 

resistant obsessive-compulsive disorder (Mantione, et al, 

2010), intractable major depression (Mayberg et al., 

2005) and other mood disorders (Downar, & 

Daskalaakis, 2013), anorexia nervosa, (Lipsman, et al., 

2013), learning disability (Kaushik, & Jena, 2022); 

autism (Friedrich et al., 2015), attention-deficit 

/hyperactivity disorder (ADHD) (Lubar & Shouse, 

1976), depression (Hammond, 2005). This is also used 

extensively in the filed of disability such as sound 

perception (Eisen, 2003), word recognition (Henkel, 

2013), word recognition (McGee, 1965) in deaf, 

cognitive restoration and augmentation (Serruya, & 

Kahana, 2008), and substance use disorder (Trudeau, 

2005). In neurorehabilitation, epilepsy is one such 

condition where this is used effectively in many cases 

who simply do not benefit from anti-epileptic drugs. 

They have distinct pattern of neurological activity 

associated with the initiation and establishment of 

seizure attacks. Recently, few labs have introduced 

automatic seizure-production algorithms that can be 

applied to intracranial and scalp recording to forecast the 

occurrence of seizures.  

Imagery Enhancement  

Imagery-based BCI helps in use of mental imagery, and 

the purpose being reinforcing mental imagery in order to 

enhance performance of the individual client. A majority 

of researches have been conducted in this area of 

restoration of motor control. The fundamental 

parameters of motor control emerge by collective 

activation of population of motor neurons in primary 

motor cortex (M1). These neurons are broadly turned to 

the direction of force required to generate a reaching arm 

movement (Georgopoulos, Schwartz, & Kettner, 1986). 

Even if these neurons fire maximally, before the onset 

and execution and of the arm of a movement (activity). 

They also fire significantly before the movement in 

broad ranges of other directions. It suggests that one can 

design algorithms capable of extracting motor control 

signals from these ensembles, for their clinical use. 

Hundreds and thousands of people suffer from motor 

impairment in which intact movement-related areas of 

the brain cannot generate movement because of damage 

to the spinal cord, nerves and nerves to the muscles. They 

can benefit from BCI-based muscle activation. 

Close Sensorimotor Loop 

The ability to learn, adapt, and refine motor skills are the 

key features of sensorimotor control. Cognitive control 

employs cognitive processes such as prediction, learning 

and multisensory integration. The neural processes behind 

these cognitive processes even in one of the simplest acts 

like arm reaching, is quite intricate. The action involves a 

nonlinear dynamics and multiple modalities. A BCI is a 

well-defined sensorimotor loop with key simplifying 

advantages that address each of these challenges, while 

engaging similar cognitive processes. As a result, it is 

becoming recognized as a powerful tool for basic 

scientific studies of sensorimotor control (Golub, Chase, 

Batista, & Yu, 2016). 

The key aspect of this approach is re-establishing the 

disrupted sensorimotor feedback loop. This is about 

determining the intended movement using a BCI and 

helping the individual with impaired motor function  

(Gomez-Rodriguez, et al., 2010). This is a valuable tool 

for neuro-rehabilitation and has been used in cases with 

severe hemiparetic syndromes due to stroke 

(crebrovacular brain damage) and other conditions. 

Haptic feedback helps to improve motor coordination. 
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Close sensorimotor loop is also used in the context of 

control of orthosis. The purpose was to associate 

intention with haptic feedback control of orthosis. 

Badakva and associates (2016) suggested that BCIs have 

to be based on bidirectional system involving tactile, 

proprioceptive and other useful feedback.  

Neuroergonomics 

A key aspect of this approach is re-establishing the 

disrupted sensorimotor feedback loop, i.e., determining 

the intended movement using a BCI and helping a human 

with impaired motor function to move the arm using a 

robot. 

Neuroergonomics applications  

BCI also has a neuroergonomics applications, that is use 

of brain signals to control external devices without need 

for motor output. Neuronal ensemble control of 

prosthetic devices by patients, in other words called 

‘neuromotor prostheses’ (NMPs) is a challenging area. 

The aim is to replace or restore motor functions in 

paralyzed patients. This is made possible by routing 

movement-related signals from brain, around damaged 

areas of the neural systems, to external affectors 

(Hochberg, 2006). This would help individuals who have 

limited or no need for motor output, as in case of ‘locked-

in’ patients who are confined to their beds with 

amyotrophic lateral sclerosis (ALS) who have virtually 

no motor control (Kramer, & Parasuraman, 2007). 

Noninvasive BCIs have been used successfully with a 

wide range of clinical population such as chronic pin 

(Coffey, 2001), Ischemic stroke (Bearden et al., 2003; 

Buttaro, 2012), Tourette’s syndrome (Kaido et al, 2011; 

Wardell, et al., 2015), hypertension (Das, 2010).  

CONCLUSION 

To sum up, undoubtedly, the field of BCI is expanding 

rapidly and the achievements are remarkable. Looking at 

the advances in neuroscience, we expect that, could one 

day we shall allow our patients to use their brain activity 

to control sophisticated electronic, mechanical and even 

virtual devices to their fullest extent? Although, this has 

remained a very distant dream, the success stories are 

many. There is accumulating evidence that BCI has been 

quite useful with patients suffering from a wide range of 

neurological, psychological and behavioural disorders.  

In recent years, sensitivity of the instruments used for 

this purpose have been remarkably enhanced, making 

them more sophisticated and sensitive to neural activity 

in the brain. For instance, when repeated or continuous 

monitoring of brain activity obtained from surface scalp 

electrodes, it is found to be contaminated with increased 

artifacts due to muscle and electronic artifacts, therefore 

now subdermal electrodes are used as non-invasive 

alternatives, particularly for low frequency waves (8-30 

Hz) (Smith, Olson, Darvas, & Rao, 1928). There has 

been revolutionary change in biomedical engineering, 

particularly in acquisition, classification and processing 

of neural signals. In view of these developments, now 

BCIs can facilitate much more natural, seamless and 

intuitive interaction. This has opened up several 

modalities including Virtual Reality (VR) and 

Augmented Reality (AR) to explore its use further.  

However, there are still methodological questions. The 

researches are plagued with methodological issues such 

as small sample size, unavailability of control group, and 

lack up long-term generalization beyond the hospital 

settings (very few follow-up studies). Randomized 

control designs considered as ‘gold standards’ of 

intervention research, are rare to find. Unlike 

pharmacological studies on drugs, the process of 

research is slow. Some of these difficulties are due to the 

cost of the instrument, training time and other logistic 

issues. Future searchers should look into these 

limitations of methods and improvisation of the 

technology in use. 

While conceptualizing the complex movements of a 

classical dancer or a gymnast, we always admire the 

amazing co-ordination that results in such exquisite 

accomplishment. Can this again happen to a performer 

paralyzed by traumatic brain injury? Although the 

question is too difficult to answer at the moment, 

possibilities and promises of BCI are immense.  
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